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Abstract

Background

During the 2014 Ebola virus disease (EVD) outbreak, policy-makers were confronted with

difficult decisions on how best to test the efficacy of EVD vaccines. On one hand, many

were reluctant to withhold a vaccine that might prevent a fatal disease from study partici-

pants randomized to a control arm. On the other, regulatory bodies called for rigorous pla-

cebo-controlled trials to permit direct measurement of vaccine efficacy prior to approval of

the products. A stepped-wedge cluster study (SWCT) was proposed as an alternative to a

more traditional randomized controlled vaccine trial to address these concerns. Here, we

propose novel “ordered stepped-wedge cluster trial” (OSWCT) designs to further mitigate

tradeoffs between ethical concerns, logistics, and statistical rigor.

Methodology/Principal Findings

We constructed a spatially structured mathematical model of the EVD outbreak in Sierra

Leone. We used the output of this model to simulate and compare a series of stepped-

wedge cluster vaccine studies. Our model reproduced the observed order of first case

occurrence within districts of Sierra Leone. Depending on the infection risk within the trial

population and the trial start dates, the statistical power to detect a vaccine efficacy of 90%

varied from 14% to 32% for standard SWCT, and from 67% to 91% for OSWCTs for an

alpha error of 5%. The model’s projection of first case occurrence was robust to changes in

disease natural history parameters.
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Conclusions/Significance

Ordering clusters in a step-wedge trial based on the cluster’s underlying risk of infection as

predicted by a spatial model can increase the statistical power of a SWCT. In the event of

another hemorrhagic fever outbreak, implementation of our proposed OSWCT designs

could improve statistical power when a step-wedge study is desirable based on either ethi-

cal concerns or logistical constraints.

Author Summary

When a vaccine is developed, it undergoes a series of tests to assess its safety and effective-
ness. The last of these is called a Phase III clinical trial, in which the vaccine is tested on a
subset of the population before it is approved for general use. A randomized controlled
trial (RCT) in which individuals are randomized to receive vaccine or placebo is the most
direct and efficient trial design to assess the efficacy of a vaccine. However, in circum-
stances where a disease has a very high mortality rate (such as Ebola virus disease), the use
of placebo is ethically questionable, especially when there is strong evidence that a vaccine
will be safe and efficacious. Vaccine trials often must also address logistical constraints
that prevent the introduction of the vaccine to the entire trial population in certain
resource-poor settings. These issues were front and center in discussions about vaccine tri-
als during the 2014 Ebola outbreak. The medical community faced questions on the clini-
cal trial design that best balanced tradeoffs between ethical concerns, logistics, and
statistical rigor. In this study, we propose and assess novel “ordered stepped-wedge cluster
trial” designs as an alternative to mitigate these tradeoffs.

Introduction
The 2014 Ebola virus disease (EVD) epidemic is the largest recorded outbreak of any filovirus
infection, primarily affecting three major countries in West Africa: Guinea, Liberia, and Sierra
Leone. The three countries combined had a total of 15,901 cases (confirmed, probable and sus-
pected) and 5,674 deaths as of November 26, 2014, when the epidemic peaked in the affected
regions [1]. At that time, many candidate vaccines were proposed for Phase III trials in the
affected countries, with different vaccine trial designs suggested for each region. Between April
1, 2015, and July 20, 2015, a Phase III trial in Guinea assessed the efficacy of a Zaire Ebolavirus
vaccine (rVSV-ZEBOV) [2]. The design was a ring vaccination cluster-randomized trial, where
the trial population was made up of clusters of all contacts and contacts of contacts of labora-
tory-confirmed Ebola cases. Thus, a robust contact tracing system was an essential component
of the trial. Unfortunately, the 2014 Ebola outbreak has demonstrated that it requires valuable
time to establish a reliable contact tracing system in the setting of damaged public health infra-
structure, a severe shortage of health care workers, and community resistance, amongst other
reasons [3].

The stepped-wedge cluster trial (SWCT) was another trial design proposed to test a candi-
date vaccine in Sierra Leone (SL) during the outbreak. In contrast with ring vaccination, the
SWCT does not rely on a contact tracing system [4,5]. The trial population is made of geo-
graphically distinct clusters that are randomly and sequentially assigned to vaccination. This
design is desirable when vaccination cannot be introduced to all clusters at once due to
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logistical or financial reasons, and has the ethical advantage of not intentionally withholding
vaccines from unvaccinated clusters while they serve as control groups. However, when the
vaccine is expected to be efficacious, the risk of infection is predicted to vary between clusters
over time, and these different risks can be predicted, randomly choosing a cluster to be treated
fails to prioritize those at highest risk (which undermines the ethical advantage of the SWCT).
Furthermore, Bellan et al. [6] have shown that spatiotemporal variation in infection risk under-
mines the statistical power of the SWCT. Here, we propose novel “ordered stepped-wedge clus-
ter trial” (OSWCT) designs to address these limitations of the standard SWCT.

OSWCT designs differ from SWCT when clusters are predicted to have different infection
risks. Specifically, OSWCT designs use conditional randomization to assign clusters to vaccina-
tion. The cluster to vaccinate at a given time point is randomly selected from a subset of clus-
ters that are likely to have a higher infection risk. We considered three strategies to identify the
highest risk clusters: based on the order of first EVD case occurrence in each cluster as pro-
jected by a spatial model, based on the observed highest incident cases two weeks previously, or
the highest projected weekly incidence. By prioritizing clusters, OSWCT mitigates the ethical
dilemma of randomly assigning treatment to clusters when they are predicted to have low
infection risk.

In this study we assessed the statistical power of these novel trial designs. We simulated and
estimated the statistical power of all the designs in the following steps. First, we constructed a
metapopulation model that combines EVD transmission and individuals’movements between
regions in order to predict the spatiotemporal trends of the disease. Second, we used either the
observed or modeled incidence data within districts of SL to assign clusters to receive vaccina-
tion for the OSWCT designs. Third, we used a stochastic model to simulate all trial designs,
and finally we used a nonparametric method (permutation test) to analyze the simulated data
and to estimate the statistical power of trial designs.

Methods

Data sources
Case count data. The World Health Organization (WHO) provided weekly updated data

on the number of newly confirmed and probable Ebola cases for each district in Sierra Leone
starting from the week of May 19, 2014, and for each county in Liberia starting the week of
March 17, 2014. These were derived from two sources: a daily situation report from the Minis-
tries of Health (MOH) [7] which contained a summary of the total number of probable and
laboratory confirmed EVD cases in each country; and an individual-level patient database [8]
or “linelist” which contained information on the symptoms, diagnosis, and outcomes for each
probable or confirmed Ebola case. WHO defined a “probable case” as a person who a clinician
suspected of having Ebola, or who died from “suspected” Ebola and had an epidemiological
link to a confirmed case but was not tested for the disease. A probable or suspected case was
reclassified as confirmed if that person tested positive for Ebola by a PCR-based test. WHO
continuously updated the patient database as a result of the ongoing reclassification, retrospec-
tive investigations, and availability of laboratory results.

Geospatial data. We used the Database of Global Administrative Areas (GADM) [9],
which provides data on the location of the world's administrative areas, to obtain the bound-
aries of the 153 chiefdoms within the 14 districts of SL. We estimated the population density
for each chiefdom in SL from the Oak Ridge National Laboratory’s global population distribu-
tion data LandScan [10]; the LandScan algorithm uses spatial data and imagery analysis tech-
nologies to disaggregate census counts within an administrative boundary. To calculate the
distance between chiefdoms, we identified population-weighted centroids for each using the
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geographic information system software ArcGIS version 10.2 and then measured the pairwise
distance between centroids (Fig 1).

Model specification
EVD transmission model. Wemodified a previously published SEIR model [11] to cap-

ture the dynamics of EVD transmission in the 2014 SL and Liberian epidemic. Here, we
assumed that susceptible individuals [S] enter the exposed [E] compartment at a rate (β) that
reflects the frequency of close contact with body fluids of infectious people [I] and the probabil-
ity of an infection event after contact. We assume that β varies depending on the status of infec-
tious cases, and that transmission rates from patients in Ebola treatment units (ETUs) (βetu)
are lower than those from patients in the community (βc), which are again lower than those
from patients who have died and are undergoing burial (βf). After an incubation period (1/α),

Fig 1. The chiefdoms of Sierra Leone with their population-weighted centroids.

doi:10.1371/journal.pntd.0004866.g001
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infected individuals develop “dry” symptoms (fever, myalgia, headache, presence of oropha-
ryngeal lesions, nausea, abdominal pain, and rash); these can prompt clinical diagnosis, identi-
fication, and isolation of an EVD case [Fe] but they occur prior to the onset of infectiousness
which occurs when the infected person develops “wet” symptoms (vomiting, diarrhea, cough-
ing, hemorrhage) (1/) days after the onset of “dry” symptoms [12,13]. We assumed that infec-
tious individuals [I] can either recover at rate (r) or die at rate (δ). Fig 2 shows a timeline of
Ebola infection and the relevant rates.

Fig 3 summarizes our assumptions regarding the clinical management of patients with
EVD. We assumed that patients with dry and wet symptoms were admitted to ETUs with
probability (θ) and that the remainder remained in the community. We also assumed that
EVD patients who died in ETUs received “safe” burials (i.e., were handled in a way to prevent
exposure to body fluids) while a proportion (1-k) of those who died in community received
“unsafe” burials and remained infectious for the duration of traditional funerals, (1/f) days (see
full equations in the S1 Appendix).

Gravity model. We linked the EVD transmission model to a spatial model in order to cap-
ture the geographic and temporal trends due to human mobility between regions of SL. Here,
we used a gravity model, which assumes that mobility between two regions is directly propor-
tional to their population sizes and inversely proportional to the distance between them:

mði; jÞ ¼ r
PðiÞ:PðjÞ
Dði; jÞn ; i; j ¼ 1; . . . ;Tr ð1Þ

where P(i) is the population in region i, D(i, j) is the distance between the population weighted
centroids of regions i and j; and Tr is the total number of regions. ρ is the proportionality factor,

Fig 2. Timeline of EVD at the individual level.

doi:10.1371/journal.pntd.0004866.g002
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and n a constant that determines the strength of the dependence of mobility rate on distance. Here
we refer to the combined transmission model and gravity model as the metapopulation model.

Model parameterization
Static parameters. We obtained parameters for the incubation period, the time from

onset of dry symptoms to wet symptoms, the duration of infectiousness, and the time from
onset of wet symptoms to death from our previous systematic review [14]. We estimated the
time from onset of any symptoms to hospitalization (1/αh) from a published case series [15].

Time-varying parameters. To capture the impact of public health interventions on the
Ebola epidemic, we assumed that the major international response to Ebola that began in Sep-
tember 2014 altered the following: the probability that an EVD case was admitted to an ETU (θ),
the case fatality ratio (δ), and the proportion (k) of EVD deaths within the community that were
followed by a safe burial. We assumed that the probability of admission to an ETU was a func-
tion of the number of ETU beds available and we modeled this based on the bed count reported
by the Humanitarian Data Exchange [16] for the period from September 16, 2014, to January
19, 2015. We found that the case fatality ratio [1] in SL for the months of September through
December 2014 was best fit to a cubic regression curve. Lastly, the time-varying probability that
community deaths received safe burials was estimated fromWHO situation reports [1].

Model calibration
Initial dynamics of infection. We calibrated the EVD transmission model in SL to the

cumulative number of Ebola cases from May 19, 2014, to September 16, 2014, by fitting

Fig 3. Natural history of Ebola virus disease at the population level.

doi:10.1371/journal.pntd.0004866.g003
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transmission coefficients and the probability of hospitalization to minimize the squared differ-
ences between modeled and reported disease counts.

Calibration of the gravity model. Because the daily and weekly EVD cases [7,8] were only
reported at the district or country level in SL as opposed to at the chiefdom level, with the best-
fit parameter values obtained from the initial transmission model we next coupled the trans-
mission model to the gravity model to fit the values of ρ and n that best reproduced the
reported order and timing of the initial case in each district.

Changing dynamics of infection over time. The onset of the international response to
Ebola in West Africa in September involved the establishment and staffing of ETUs, the intro-
duction of personal protective equipment for health care workers (HCWs), the dissemination
of information about transmission, and the implementation of intermittent social distancing
measures. Using incidence data from September 16, 2014, to January 19, 2015, we fit post-
intervention transmission coefficients. However, the international response was implemented
gradually, so we also fit exponential decay parameters to represent the progressive transition
from pre-intervention transmission rates to post-intervention transmission rates.

Model validation
We tested the validity of the metapopulation model by comparing the model output to the epi-
demic trajectory in Liberia, assuming that the pre-intervention transmission model and human
mobility parameters for EVD were the same as those in SL. We evaluated goodness of ordering
and timing with the Spearman correlation coefficients for the observed versus expected order
and timing of first case occurrence in each county.

We also tested the extent to which the metapopulation model’s ordering of first case occur-
rence depended on the disease parameters used in the EVD transmission model. We therefore
simulated a hypothetical outbreak of smallpox, varicella (chickenpox), and measles in the same
regions of SL, with model parameter values drawn from the published literature (see S1 Appen-
dix). We then coupled each of the new transmission models to the gravity model and reran the
metapopulation model to obtain new ordering of first case occurrence. We measured the corre-
lation between the metapopulation model’s ordering of the Ebola outbreak versus the hypo-
thetical smallpox, varicella, or measles outbreaks by evaluating Spearman correlation
coefficients.

Vaccine trial design
We first considered a standard stepped-wedge cluster trial (SWCT) [4,5] in which a single new
cluster is randomly selected to receive vaccination at each pre-allocated time point during the
trial period (Fig 4). In all of our simulations, a new cluster was vaccinated each week. Each clus-
ter was considered part of the control group until it crossed over to the treatment arm of the
trial, and all clusters were followed from the beginning of the trial until it ended. Vaccine effi-
cacy was estimated by comparing incidence in the vaccinated and unvaccinated clusters at each
time step [17].

While SWCTs are often used to evaluate the impact of interventions for chronic noncom-
municable diseases, they encounter methodological problems when they are used to evaluate
those for infectious diseases. Specifically, the force of infection over the course of an epidemic
often varies widely between clusters and changes over time. To account for such variation
between clusters, we proposed “ordered stepped-wedge cluster trial” (OSWCT) designs in
which clusters are assigned to a treatment group based either on the observed incidence data or
on a projection of cases derived from a spatially structured transmission model (Fig 5). The
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overarching purpose of this design is to randomly select for intervention a cluster from a more
homogeneous subset of clusters.

We simulated and assessed the statistical power of four vaccine study designs: a standard
SWCT and three types of novel OSWCTs, one in which we ordered clusters according to the
districts with the most observed cases in the two weeks prior (data-OSWCT), a second in
which we ordered clusters based on the ordering of first case occurrence in districts by our spa-
tially structured EVD model (first-OSWCT), and a final design in which we ordered clusters
based on the highest predicted incidence at each implementation time step (peak-OSWCT).
For all OSWCTs, we randomly selected the cluster to be vaccinated at each time step from
among the top N (e.g., 4 or 5) unvaccinated clusters ranked by the ordering strategy, and the
remaining N-1 unvaccinated clusters served as the control group (Fig 5). Once vaccinated,

Fig 4. Traditional SWCT design. All clusters contribute cluster time from the beginning to the end of the study, and clusters are randomly assigned to
treatment. Here we only show 8 of the 14 clusters.

doi:10.1371/journal.pntd.0004866.g004
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clusters continued to contribute cluster time until the end of the trial. When there were N or
fewer unvaccinated clusters remaining, OSWCT designs became analogous to the standard
SWCT design.

We chose these different ordering strategies because the first-OSWCT design does not rely
on availability of epidemic data to be able to order clusters, therefore it can be used when one is
planning an OSWCT early in the outbreak before all the regions have observed their first case.
However, if a trial does not start until later in the outbreak after the disease has spread to all
regions, then ordering based on first case occurrence is no longer an efficient strategy. Ordering
strategies based on the highest observed incidence two weeks prior (data-OSWCT) or on a pro-
jection of weekly highest cases (peak-OSWCT) are applicable to trials starting early or late in
the outbreak. In principle, a peak-OSWCT could be designed using a metapopulation model
informed only by baseline geographic data and initial estimates of model parameters. However,
a model that takes into account surveillance data up to the start of the trial as well as data on
the implementation of other disease control interventions is likely to have greater predictive
ability. Another advantage of the transmission model-driven ordering schemes (first-OSWCT
and peak-OSWCT) is that the randomization can be undertaken before any cluster receives

Fig 5. OSWCT designs. A cluster contributes cluster-time (solid line) in time [t, t+1) if it is selected among the top N highest risk clusters or if it has been
previously vaccinated, otherwise it does not contribute (dash line) cluster time in that time interval. White dots represent selected clusters that serve as
controls, black dots serve as the treatment group, and the black dot with dashed circle represents the cluster that was randomly selected among the top
N highest risks clusters to receive treatment at that time point. Here we only show 8 of the 14 clusters.

doi:10.1371/journal.pntd.0004866.g005
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vaccination, compared to the data-driven ordering scheme (data-OSWCT) which relies on the
availability of surveillance data and thus requires the randomization be updated as the trial
progresses.

Vaccine trial simulations
Following Bellan et al. [6], we used a stochastic model to simulate vaccine trials. We assumed
that the trial would be conducted in geographically distinct clusters, with each drawn from the
population of one of the 14 districts of Sierra Leone. In April 2015, the U.S. Centers for Disease
Control and Prevention (CDC) partnered with various institutions in SL including its Ministry
of Health and Sanitation (MOHS) to conduct a Phase II and Phase III clinical trial named
Sierra Leone Trial to Introduce a Vaccine against Ebola (STRIVE) [18,19]. The study enrolled
HCWs and other frontline workers to assess the safety and efficacy of an Ebola vaccine candi-
date. Participants were randomized to receive vaccination immediately (on the day of enroll-
ment or within seven days) or to receive delayed vaccination (about six months later).

We consequently assumed our simulated trials to be conducted in high-risk individuals,
such as HCWs and burial team members, and that all the simulated clusters would be of equal
size. We assumed that without effective vaccination, a proportion (p) of the reported incident
cases in the district would occur in the corresponding cluster; using proportionality constant
(p), we derived the cluster-level hazard (Hp) to be directly proportional to the incidence of
cases in the corresponding district. The force of infection risk for each individual within a spe-
cific cluster and time interval isHP

� ε, where ε captures expected variation in individual infec-
tion that is log-normally distributed with mean 1 and standard deviation 1. We assumed that a
cluster could be fully vaccinated within one week and that the vaccine effect began after a delay
of (di).

STRIVE was expected to enroll 6,000 participants [19]. We assumed that each of the 14 sim-
ulated clusters had 430 individuals in order to arrive at a simulated trial size of 6020 individu-
als, to approximately match the originally expected sample size of the STRIVE trial. In our
baseline simulation, we assumed that a hypothetical study began early during the outbreak
before all districts were reported to have cases (between mid-May to late August 2014). We
assumed that 5.2% of the total number of cases in each district would have occurred within
high-risk groups, consistent with CDC reports [20]. Based on the preliminary results of the
rVSV ring vaccination trial in Guinea [2], we assumed that vaccine efficacy (ve) was 90% and
that the time from vaccination to the onset of vaccine-induced immunity (di) was one week. In
sensitivity analyses, we varied trial start dates as well as values (p), (ve) and (di). When we sim-
ulated a trial that started late during the course of the outbreak (between late November 2014
to mid-March 2016), we dropped the ordering design based on first case occurrence in districts
(first-OSWCT), since all districts were predicted to have their first EVD case by late August
2014.

Statistical analysis
We used a nonparametric method (permutation test) described by Bellan et al. [6] to analyze
the simulated data for all designs including SCWT as well as all types of OSWCT. For each
cluster i during each week t, we calculated the simulated number of infected individuals (Yit),
their vaccine status (Xit), their cluster-time status (CTit) (that is, an indicator variable set to 1
for previously vaccinated clusters and the set of high-ranking clusters from which the vacci-
nated cluster was randomly drawn at time t), and the vaccinated and unvaccinated person-
time (PYit) for all trial participants. We analyzed the data with a generalized estimating equa-
tion (GEE), log(E(Yit)) = Ci + βvacXit + βct CTit + βtime t + log(PYit), where Ci is a cluster-level
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random effect, and we estimated βvac, the log relative hazard of infection among vaccinated
compared to the unvaccinated. We computed the estimated vaccine efficacy as

V̂e ¼ 1 � exp ð̂vacÞ. We also computed the magnitude of bias in the vaccine efficacy estimate

as V̂e� Ve.
Under the null hypothesis of no vaccine effect, the time at which a cluster received vaccina-

tion will have no impact on the number of cases that occur. We therefore permuted 1000 times
the order in which clusters were vaccinated, keeping individuals’ final infection status
unchanged, and re-estimated βvac for each permutation. We calculated a Wald statistic [21] for
each permuted data set and tested the null hypothesis of no vaccine effect with a two-sided sig-
nificance level α = 0.05. To estimate the power to detect vaccine efficacy, we repeated this pro-
cess 2000 times.

Results

Model parameterization and calibration
Table 1 gives the set of parameters that best fit the reported case counts for Sierra Leone in
both the pre and post-intervention periods. Prior to the scale up of intervention measures we
found the transmission coefficients of 0.48 in the community, 0.16 in ETUs, and 0.54 in funer-
als. After the implementation of intervention controls into the model, we estimated these trans-
mission coefficients decreased by 81% in the community, 69% in ETUs and 52% at funerals.
Fig 6 shows that the transmission model accurately fit the early disease trends reported in SL
and Liberia through mid-September 2014. However, without any change in the transmission
model parameters to reflect intervention measures, the model predicted an abrupt increase in
cases.

To capture the impact of public health interventions on the Ebola epidemic after mid-Sep-
tember 2014, we changed the transmission model parameters including transmission parame-
ters, the case fatalities rates, the probability of hospitalization, and the probability of safe burial.
In Fig 7, we fit the transmission model with interventions to the reported data from the begin-
ning of the outbreak up to mid-January 2015, whereas the modeled trajectory without inter-
vention measures deviated from the reported data after mid-September 2014. The plot also
shows a comparison of the model forecast with the reported data that we did not use for fitting
the model from mid-January until October 2015. Fig 8 plots the projected order and timing of
the first cases in each district of SL against the reported order; Spearman Correlation coeffi-
cients were 0.84 (P value<0.001) and 0.63 (P value<0.01), respectively. We obtained a simi-
larly good fit for the projected order and timing of first county cases in Liberia with Spearman
correlation coefficients of 0.95 (P value<0.001) and 0.96 (P value<0.001), respectively (Fig 9).

We found the metapopulation model’s projected ordering of first case occurrence within
the districts to be consistent when we used different transmission model parameters for a
hypothetical outbreak of smallpox, varicella, and measles in the same regions of SL. We
obtained Spearman correlation coefficients of 0.88 (P value<0.001) between the order for
EVD versus smallpox, of 0.81 (P value<0.001) for EVD versus varicella, and 0.78 (P value
<0.001) for EVD versus measles (Fig 10).

Statistical power for SWCT and OSWCT trial designs
We used the ordering of cases to simulate different vaccine trial designs in SL with clusters
ordered to receive treatment based on random assignment (SWCT), on observed highest inci-
dence in the two weeks prior (data-OSWCT), on the metapopulation model’s projected first
case within districts (first-OSWCT), or on the highest weekly projected incidence (peak-
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OSWCT). For all of the OSWCT designs, the cluster to be vaccinated was randomly drawn
from the 4 highest-ranked unvaccinated clusters (once 4 or fewer clusters remained, the
ordered designs effectively operate as standard SWCTs with random assignment). When the
trial started early during the outbreak (prior to September 2014) before all the districts
observed their first case, we calculated the correlation between the different ways of ordering

Table 1. Metapopulation model parameters.

Parameter Definition Sierra Leone Values Liberia Values Reference

EVD Natural History
α-1 Incubation period 7.34 days - [14]

ϕ-1 Time from onset of “dry” symptoms to onset of “wet” symptoms 6.05 days - [14]

αh
-1 Time from onset of any symptoms to hospitalization 4 days - [15]

ϕh
-1 = ϕ-1 - αh

-1 Time from hospitalization with “dry” symptoms to onset of “wet” symptoms 2.05 days - calculated

γ-1 Time from onset of “wet” symptoms to death 8 days - [14]

r-1 Duration of “wet” symptoms for survivors 9.40 days - [14]

rh
-1 = r-1 - αh

-1 Time from hospitalization with “wet” symptoms to end of “wet” symptoms for
survivors

5.40 days - calculated

γh
-1 Time from hospitalization to death 4 days - [15]

f-1 Duration of traditional funerals 2 days - [11]

Disease dynamic pre-intervention (up to 16 Sep 2014)

β0
c Transmission coefficient in the community 0.48 day-1 0.43 day-1 fitted

β0
etu Transmission coefficient in the ETUs 0.16 day-1 0.12 day-1 fitted

β0
f Transmission coefficient during funeral practices 0.54 day-1 0.60 day-1 fitted

θ Probability of hospitalization 0.45 - fitted

δ Case fatality ratio 0.69 - [22]

δ1 = dr
drþð1�dÞ g Case fatality rate in the community 0.65 - calculated

δ2 =
dðrþrhÞ

dðrþrhÞþð1�dÞðgþghÞ

Case fatality rate in the ETUs 0.63 - calculated

k Proportion of decedents in community who receive safe burial 0 -

Disease dynamic post-intervention (16 Sep 2014–19 Jan 2015)
β1

c Final transmission coefficient in the community 0.09 day-1 fitted

β1
etu Final transmission coefficient in the ETUs 0.05 day-1 fitted

β1
f Final transmission coefficient during funeral practices 0.26 day-1 fitted

θ(t) Probability of hospitalization function of beds in
ETUs

calibrated

δ Case fatality ratio cubic curve calibrated

δ1 Case fatality rate in the community function of δ(t) †

δ2 Case fatality rate in the ETUs function of δ(t) †

k Proportion of decedents in community who receive safe burial linear increase calibrated

qc Exponential decay rate from β0
c to β1

c in the community 0.06 fitted

qh Exponential decay rate from β0
etu to β1

etu in ETUs 0.55 fitted

qf Exponential decay rate from β0
f to β1

f during funerals 19 x 10−9 fitted

Gravity parameters

ρ Gravity proportionality factor 6.31 x 10−13 - fitted

n Gravity constant 2.55 - fitted

Definition of abbreviations: ETUs, Ebola treatment units; EVD, Ebola virus disease.

(-): Parameter values were assumed as in Sierra Leone.
†: Equations are the same as in the pre-intervention period.

doi:10.1371/journal.pntd.0004866.t001
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clusters, and we obtained similar correlation between first-OSWCT, data-OSWCT, and peak-
OSWCT (Fig 11).

When we estimated the bias in vaccine efficacy estimates at the end of the trial, we found
that first-OSWCT underestimated vaccine efficacy by 3.0%, data-OSWCT overestimated vac-
cine efficacy by 1.4%, and peak-OSWCT overestimated vaccine efficacy by 0.7%. In contrast,
SWCT underestimated vaccine efficacy by 0.87%. Fig 12 shows the change in bias over the
course of the trial for all designs. We further investigated the bias of all designs when vaccine
efficacy (ve) is set to zero (see S1 Appendix), on average the bias was 0.7% for SWCT, 0.1% for
first-OSWCT, -0.7% for data-OSWCT, and -0.4% for peak-OSWCT. We estimated the corre-
sponding type I error for SWCT to be 3.1%, for first-OSWCT 2.8%, for data-OSWCT 3.3%,
and for peak-OSWCT to be 3.6%.

We found that the ordered study designs first-OSWCT, data-OSWCT, and peak-OSWCT
had superior statistical power when compared to the standard SWCT design. In the baseline
simulations, where we assumed the trial started 5 weeks after the onset of the outbreak, the
ordered designs all had similar power to detect a vaccine efficacy of 90% with power ranging
from 65% to 72%, compared to a power of 14% for the standard SWCT design. As we simu-
lated later trial start dates, first-OSWCT design performed less efficiently compared to data-
OSWCT and the peak-OSWCT designs (Fig 13A).

When we simulated trials with a start date after all clusters had observed their first case, we
only simulated the SWCT, data-OSWCT, and peak-OSWCT designs, and no longer included

Fig 6. Initial dynamics of infection. Transmission model calibrated to the cumulative number of Ebola cases reported in SL fromMay 19, 2014,
to September 16, 2104, and in Liberia fromMarch 17, 2014, to September 16, 2014.

doi:10.1371/journal.pntd.0004866.g006
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the first-OSWCT design. The statistical power to detect a vaccine efficacy of 90% was 32% for
SWCT, 84% for data-OSWCT, and 91% for peak-OSWCT (Fig 13B). While all the OSWCT
designs were more efficient than the SWCT design regardless of when the trial started, all
designs lost efficiency when the trial start date was delayed. Similarly for trial start date set at
10 weeks after onset of outbreak, Fig 13C and 13D show that peak-OSWCT outperforms data-
OSWCT, first-OSWCT, and SWCT regardless of the proportion (p) of cases that occur in
high-risk groups, or the vaccine efficacy (ve). In S1 Appendix we show similar results when the
time from vaccination until vaccine-induced immunity (di) varies.

Discussion
Here we demonstrate the superior efficiency of novel “ordered stepped-wedge cluster trial”
(OSWCT) designs in detecting Ebola vaccine efficacy when compared to the standard stepped-
wedge cluster trial (SWCT). To our knowledge, we are the first to propose ordering clusters by

Fig 7. Changing dynamics of infection over time. Transmission model calibrated to the cumulative number of EVD cases reported in SL fromMay
19, 2014, to January 19, 2015 and comparison of observed and projected cases from January 19,2015 to October 1, 2015, (upper panel). The lower
panel shows the model’s weekly projected cases overlaid on the reported weekly cases in SL.

doi:10.1371/journal.pntd.0004866.g007
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timing of expected outcomes to increase the efficiency of a stepped-wedge cluster trial. Among
the three ordered designs we evaluated, we found that ordering based on the highest weekly
projected incidence (peak-OSWCT) was more efficient than ordering based on projected first
case occurrence (first-OSWCT) or on observed highest cases in the prior two weeks (data-
OSWCT) regardless of when a trial begins during the course of an Ebola outbreak. However,
we also found that for trials starting within 5 weeks of the onset of an Ebola outbreak, the mag-
nitude of the statistical power of all three ordered designs was similar. The preferred trial
design may be influenced by available epidemiologic data. Both model-based approaches (first-
OSWCT and peak-OSWCT) require knowing where the outbreak began. However, unlike the
data-OSWCT, neither model-based approach requires surveillance in the two weeks before the
trial begins. The peak-OSWCT is more dependent than the first-OSWCT on the parameteriza-
tion of the model; hence without accurate estimates of model parameters from a priori knowl-
edge, fitting to initial data on the outbreak, or both, the first-OSWCT approach is more
desirable. We also found that if vaccine trials are delayed beyond the first 15 weeks of an out-
break then peak-OSWCT may be the optimal choice. Our findings support the importance of
epidemiologic surveillance to inform vaccine trial design.

Fig 8. Order of first case occurrence in the districts of Sierra Leone.Correlation between spatial model projections andWHO reports on initial
case dates (A) and ordering of outbreaks (B).

doi:10.1371/journal.pntd.0004866.g008
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Our transmission model is similar to other EVD models [11, 23–25] in that we distinguish
transmission that occurs from live patients in the community versus that which occurs in
ETUs versus transmission during funerals. However, our model distinguishes between EVD
patients with dry versus wet symptoms. We have shown that our model accurately fits the
observed data when it takes into account metrics of disease control interventions such as ETU
bed availability. This illustrates the importance of recording not only the incidence of disease
in outbreak settings, but also tracking when and to what degree interventions are implemented.

We stress that the efficacy of the first-OSWCT and peak-OSWCT depends on the accuracy
with which the transmission model predicts the order of cases. We sought to address the ques-
tion of model misspecification using the ordering derived from a simulation for infectious dis-
ease with different natural histories (e.g. smallpox, varicella, and measles). Using our spatially
explicit transmission model, we showed that the projected order of first case occurrence in
each district of SL was robust to different transmission scenarios for smallpox, varicella, and
measles. Fig 13A shows that when we derived the ordering from a smallpox model, we lost
power compared to when we used the Ebola transmission model, but the power remained
higher than that of a typical SWCT. This finding suggests that when planning a stepped-wedge

Fig 9. Order of first case occurrence in the counties of Liberia.Correlation between spatial model projections andWHO reports on initial case dates
(A) and ordering of outbreaks (B).

doi:10.1371/journal.pntd.0004866.g009
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vaccine trial for a filovirus outbreak in a resource-limited setting, one can approximately pre-
dict the order of first case occurrence in different regions and implement a first-OSWCT
design by using current EVD transmission parameters combined with geospatial data from the
affected country, even if the transmission parameters of the outbreak in truth differ substan-
tially from those observed for EVD. We did not specifically explore the choice of optimal value
for N (the number of top clusters from which the cluster to vaccinate is randomly chosen),
however the two extreme choices to avoid would be to set N as the total number of clusters
(which will be equivalent to the typical SWCT) or set N to be 1 (in which case there will not be
any control group to compare to). More generally, a high value for N loses the advantage of an
OSWCT while a very low value for N would lose efficiency because of the small number of con-
trols to which to compare. Therefore, we anticipate the relationship between N and power to
be non-monotonic. The specific shape of this relationship probably depends on a number of
factors, including the distribution of number of cases per cluster. This aspect of optimal
OSWCT design could be the subject of further investigation.

Gravity models have been previously used to model human mobility in the context of vari-
ous outbreaks. For instance, Ashleigh et al. [26] used a gravity model to describe the 2010 chol-
era epidemic in Haiti and to capture the ordering of first case occurrence among the
departments of Haiti, Viboud et al. [27] used it to characterize seasonal influenza dynamics in
the United States, and more recently it was used by Silva et al. [28] to capture EVD

Fig 10. Order as function of transmission model. Comparison of the metapopulation model’s projection of first case occurrence within SL districts
when parameters for EVD transmission are considered versus considering the parameters for smallpox, varicella, and measles transmission.

doi:10.1371/journal.pntd.0004866.g010
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transmission dynamics within and between Guinea, Liberia, and SL. To our knowledge, our
study is the first to link a gravity model to order a stepped-wedge cluster trial.

For our ordering of first case occurrence, we found that the metapopulation model pre-
dicted cases to occur in the Western Area Rural and Urban districts sooner than actually
occurred. This may be because these two districts (which consist of Freetown and the sur-
rounding area) are more densely populated than the other districts of SL and that the gravity
model gives more weight to more populated regions. This weight may be disproportionately
large compared to their actual influence. Other limitations of the gravity model are that it does
not take into account other factors that may influence migration such as weather conditions
and social networks, both of which are known to impact migration in sub-Saharan Africa [29].
An alternative to measure migration between regions, thus improving the accuracy of predicted
order of first case occurrence, could be to use data that directly capture human mobility, such
as mobile phone data. Buckee et al. [30] described the use of call data records (mobile phone
calls or text messages) to infer mobile phone users’ travel. These data can be used to estimate
human mobility between regions and its impact on disease transmission. However, we reiterate
that even the relatively simple gravity model can capture the spatiotemporal trends of an out-
break well enough that ordering clusters accordingly in a stepped-wedge cluster trial substan-
tially increases the statistical power of the trial.

When the vaccine being tested is expected to be efficacious and the risk of infection is pre-
dicted to differ between clusters at given time, the OSWCT design increases the probability

Fig 11. Comparison of clustering for the different ordering designs. (A) first-OSWCT vs. peak-OSWCT. (B) first-OSWCT vs. data-OSWCT. The
trial was assumed to start 10 weeks after the onset of the outbreak.

doi:10.1371/journal.pntd.0004866.g011
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that those at higher risk of infection will be vaccinated, and therefore we expect the OSWCT
design to prevent more cases. In this way, the OSWCT is ethically advantageous, in addition to
its statistical advantages. However, all types of SWCTs are ethically advantageous only to the
extent the lags between implementing the intervention between clusters are due to genuine
logistical constraints, not an intentional decision to increase the statistical power of the trial.

In this study we did not consider other clinical trial designs such as a randomized clinical
trial or a ring vaccination cluster-randomized trial. Because we also assumed the vaccine trial
to be conducted in a small subgroup of the population (healthcare workers), we did not con-
sider the indirect effect (herd immunity) of the vaccination trial on the overall disease dynam-
ics. Our main aim was to evaluate how ordering clusters when the risk of infection is
heterogeneous among them may affect the statistical power of a SWCT design in settings
where SWCT design may be desirable due to either ethical or logistical reasons. Our results
support OSWCTs as more efficient designs than the standard SWCT.

Fig 12. Measure of bias. Estimated vaccine efficacy compared to the real simulated vaccine efficacy ve = 90% for all four designs over the
course of the trial.

doi:10.1371/journal.pntd.0004866.g012
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Supporting Information
S1 Appendix. Novel ordered stepped-wedge cluster trial designs for detecting Ebola vaccine
efficacy using a spatially structured mathematical model.
(PDF)
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